Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Biochem Biophys Rep ; 38: 101673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38444735

RESUMO

Endothelial progenitor cells (EPCs) are exclusive players in vasculogenesis and endothelial regeneration. EPCs are of two types and their differentiation is mediated by different growth factors. A decrease in EPC number and function causes cardiovascular abnormalities and reduced angiogenesis. Various studies has documented a role of EPCs in diabetes. EPCs treatment with different drugs improve insulin secretion but causes other abnormalities. In vivo and in vitro studies have reported anti glycation effect of gemigliptin but no data is available on in vitro effect of gemigliptin on EPC number and functional credibility. The current study was aimed to find an in vitro effect of gemigliptin on EPC number and function along with an effective treatment dose of gemigliptin. EPCs were isolated, cultured and phenotypically characterized using Dil- AcLDL and ulex-lectin fluorescence staining. EPCs were then treated with different doses of Zemiglo and their viability analyzed with viability assay using water-soluble tetrazolium salt (WST-1), by Annexin V and Propidium Iodide (PI) staining, senescence-associated beta-galactosidase (SA-ß-gal) staining, western blot and Flow cytometric analysis of apoptotic signals. The results demonstrated that the isolated EPCs has typical endothelial phenotypes. And these EPCs were of two types based on morphology i.e., early and late EPCs. Gemigliptin dose dependently improved the EPCs morphology and increased EPCs viability, the most effective dose being the 20 µM. Gemigliptin at 10 µM, 20 µM and 50 µM significantly increased the BCL-2 levels and at 20 µM significantly decreased the Caspase-3 levels in EPCs. In conclusion, gemigliptin dose dependently effects the EPCs viability and morphology through Caspase-3 signaling. Our results are the first report of gemigliptin effect on EPC viability and morphology.

2.
Fish Shellfish Immunol ; 147: 109457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387685

RESUMO

High mobility group box 1 (HMGB1) is a multifunctional regulator that plays different roles in various physiological and pathological processes including cell development, autophagy, inflammation, tumor metastasis, and cell death based on its cellular localization. Unlike mammalian HMGB1, two HMGB1 paralogues (HMGB1a and HMGB1b) have been found in fathead minnow and other fish species and its function as an inflammatory cytokine has been well investigated. However, the role of fish HMGB1 in autophagy regulation has not been well clarified. In the present study, we generated HMGB1 paralogues single (HMGB1a-/- and HMGB1b-/-) and double knockout (DKO) epithelioma papulosum cyprini (EPC) cells from fathead minnow by CRISPR/Cas9 system, and the knockout efficiency of these genes was verified at both gene and protein levels. In this context, the effects of HMGB1 gene knockout on the protein expression of microtubule-associated protein 1 light chain 3 II (LC3-II), an autophagy marker, were determined, showing that single knockout of two HMGB1 paralogues significantly decreased the expression of LC3-II, and these inhibitory effects were further amplified in HMGB1 DKO cells under both basal and rapamycin treatment conditions, indicating the role of two HMGB1 paralogues in fish autophagy. In agreement with this notion, overexpression of HMGB1a or HMGB1b with Flag-tag markedly upregulated LC3-II protein expression. Interestingly, overexpressing two paralogues distributed in both cytoplasm and nucleus. Finally, the role of HMGB1-mediated autophagy was further explored, finding that HMGB1 could interact with Beclin1, a key initiation factor of autophagy. Taken together, these findings highlighted the role of HMGB1 paralogues as the autophagy regulator and increased our understanding of autophagic machinery in teleost.


Assuntos
Proteína HMGB1 , Animais , Proteína HMGB1/genética , Autofagia , Células Cultivadas , Proteína Beclina-1 , Mamíferos/metabolismo
3.
Heliyon ; 10(3): e25473, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327449

RESUMO

Urban Building Energy Models (UBEMs) are useful instruments to know the energy consumption of building stocks at urban and national levels. UBEMs can be classified into different types and subtypes. The current detailed physics-based bottom-up UBEMs at a national scale play a crucial role in assessing the energy efficiency of national building stocks and defining improvement strategies. These models heavily rely on archetypes and energy simulations, demanding significant computational resources. We propose here a new type of national-scale detailed physics-based UBEM based on Energy Performance Certificates (EPCs), and other open big data, which has the advantage that it can be automatically updated, in a short time, and with standard computer means. In this paper, we define the methodology to build this new type of national-scale EPC-based UBEM. We have checked that the model for the case of Spain can be automatically generated and updated in less than 6 h with a standard computer, and it generates results that match official data in more than 98 % for four indicators. The generated model contains information about 10,939,801 buildings in Spain, out of which 1,202,708 have EPCs. The model allows us to map and analyse the buildings in the country by integrating multiple variables of different nature, such as geographical (Autonomous Community, municipality, type of municipality), physical (area, number of floors, date of construction), use-related (main use of the building and use of each of its building units), and energy-related (climate zone, energy class, energy consumption, CO2 emissions). In this paper, we have proven that the model allows for the development of some indicators to measure the progress of decarbonisation trajectories whose development will become mandatory for European Member States soon.

4.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256220

RESUMO

We have recently demonstrated that exosomal communication between endothelial progenitor cells (EPCs) and brain endothelial cells is compromised in hypertensive conditions, which might contribute to the poor outcomes of stroke subjects with hypertension. The present study investigated whether exercise intervention can regulate EPC-exosome (EPC-EX) functions in hypertensive conditions. Bone marrow EPCs from sedentary and exercised hypertensive transgenic mice were used for generating EPC-EXs, denoted as R-EPC-EXs and R-EPC-EXET. The exosomal microRNA profile was analyzed, and EX functions were determined in a co-culture system with N2a cells challenged by angiotensin II (Ang II) plus hypoxia. EX-uptake efficiency, cellular survival ability, reactive oxygen species (ROS) production, mitochondrial membrane potential, and the expressions of cytochrome c and superoxide-generating enzyme (Nox4) were assessed. We found that (1) exercise intervention improves the uptake efficiency of EPC-EXs by N2a cells. (2) exercise intervention restores miR-27a levels in R-EPC-EXs. (3) R-EPC-EXET improved the survival ability and reduced ROS overproduction in N2a cells challenged with Ang II and hypoxia. (4) R-EPC-EXET improved the mitochondrial membrane potential and decreased cytochrome c and Nox4 levels in Ang II plus hypoxia-injured N2a cells. All these effects were significantly reduced by miR-27a inhibitor. Together, these data have demonstrated that exercise-intervened EPC-EXs improved the mitochondrial function of N2a cells in hypertensive conditions, which might be ascribed to their carried miR-27a.


Assuntos
Células Progenitoras Endoteliais , Exossomos , MicroRNAs , Animais , Camundongos , Humanos , Citocromos c , Espécies Reativas de Oxigênio , Mitocôndrias , Angiotensina II/farmacologia , Hipóxia , MicroRNAs/genética
5.
Curr Mol Med ; 24(2): 252-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36631922

RESUMO

BACKGROUND: Hyperglycemia is widespread in the world's population, increasing the risk of many diseases. This study aimed to explore the regulatory effect and mechanism of astragaloside IV (ASIV)-mediated endothelial progenitor cells (EPCs) exosomal LINC01963 in endothelial cells (HUVECs) impaired by high glucose. METHODS: Morphologies of exosomes were observed by light microscope and electron microscope. Immunofluorescence was used to identify EPCs and detect the expressions of caspase-1. LINC01963 was detected by quantitative reverse transcription PCR. NLRP3, ASC, and caspase-3 were detected by Western Blot. Nanoparticle tracking analysis was carried out to analyze the exosome diameter. High-throughput sequencing was applied to screen target lncRNAs. The proliferation of endothelial cells was measured by cell counting kit-8 assay. The apoptosis level of HUVECs was detected by flow cytometry and TdT-mediated dUTP Nick-End labeling. The levels of IL- 1ß, IL-18, ROS, SOD, MDA, and LDH were measured by enzyme-linked immunosorbent assay. RESULTS: ASIV could promote the secretion of the EPC exosome. LINC01963 was obtained by high-throughput sequencing. It was observed that high glucose could inhibit the proliferation, reduce the level of SOD, the expression of NLRP3, ASC, and caspase- 1, increase the levels of IL-1ß, IL-18, ROS, MDA, and LDH, and promote apoptosis of HUVECs. Whereas LINC01963 could inhibit the apoptosis of HUVECs, the increase the expression of NLRP3, ASC, and caspase-1, and decrease the levels of IL-1ß, IL-18, ROS, MDA, and LDH. CONCLUSION: EPCs exosomal LINC01963 play an inhibitory role in high glucoseinduced pyroptosis and oxidative stress of HUVECs. This study provides new ideas and directions for treating hyperglycemia and researching exosomal lncRNAs.


Assuntos
Células Progenitoras Endoteliais , Hiperglicemia , RNA Longo não Codificante , Saponinas , Triterpenos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Células Progenitoras Endoteliais/metabolismo , Interleucina-18 , Piroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Caspase 1 , Glucose/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
6.
Cytotherapy ; 26(1): 36-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37747393

RESUMO

BACKGROUND AIMS: Treating chronic non-healing diabetic wounds and achieving complete skin regeneration has always been a critical clinical challenge. METHODS: In order to address this issue, researchers conducted a study aiming to investigate the role of miR-126-3p in regulating the downstream gene PIK3R2 and promoting diabetic wound repair in endothelial progenitor cell (EPC)-derived extracellular vesicles. The study involved culturing EPCs with astragaloside IV, transfecting them with miR-126-3p inhibitor or mock plasmid, interfering with high glucose-induced damage in human umbilical vein endothelial cells (HUVECs) and treating diabetic skin wounds in rats. RESULTS: The healing of rat skin wounds was observed through histological staining. The results revealed that treatment with miR-126-3p-overexpressing EPC-derived extracellular vesicles accelerated the healing of rat skin wounds and resulted in better tissue repair with slower scar formation. In addition, the transfer of EPC-derived extracellular vesicles with high expression of miR-126-3p to high glucose-damaged HUVECs increased their proliferation and invasion, reduced necrotic and apoptotic cell numbers and improved tube formation. In this process, the expression of angiogenic factors vascular endothelial growth factor (VEGF)A, VEGFB, VEGFC, basic fibroblast growth factor and Ang-1 significantly increased, whereas the expression of caspase-1, NRLP3, interleukin-1ß, inteleukin-18, PIK3R2 and SPRED1 was suppressed. Furthermore, miR-126-3p was able to target and inhibit the expression of the PIK3R2 gene, thereby restoring the proliferation and migration ability of high glucose-damaged HUVEC. CONCLUSIONS: In summary, these research findings demonstrate the important role of miR-126-3p in regulating downstream genes and promoting diabetic wound repair, providing a new approach for treating chronic non-healing diabetic wounds.


Assuntos
Diabetes Mellitus , Células Progenitoras Endoteliais , Exossomos , MicroRNAs , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Piroptose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glucose/metabolismo , Proliferação de Células/genética , Proteínas Adaptadoras de Transdução de Sinal
7.
Biophys Chem ; 304: 107128, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922819

RESUMO

Engineering of reaction media is an exciting alternative for modulating kinetic properties of biocatalytic reactions. We addressed the combined effect of an aqueous two-phase system (ATPS) and high hydrostatic pressure on the kinetics of the Candida boidinii formate dehydrogenase-catalyzed oxidation of formate to CO2. Pressurization was found to lead to an increase of the binding affinity (decrease of KM, respectively) and a decrease of the turnover number, kcat. The experimental approach was supported using thermodynamic modeling with the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) equation of state to predict the liquid-liquid phase separation and the molecular crowding effect of the ATPS on the kinetic properties. The ePC-SAFT was able to quantitatively predict the KM-values of the substrate in both phases at 1 bar as well as up to a pressure of 1000 bar. The framework presented enables significant advances in bioprocess engineering, including the design of processes with significantly fewer experiments and trial-and-error approaches.


Assuntos
Formiato Desidrogenases , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Biocatálise , Cinética , Candida
8.
Actual. SIDA. infectol ; 31(113): 25-33, 20230000. tab, graf
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1527376

RESUMO

Estudio cuasi-experimental desarrollado para disminuir el impacto de la resistencia a los antimicrobianos a través de un programa de prevención de infecciones y optimización del uso de antimicrobianos construido "a medida" según las posibilidades de la institución. Se implementó: vigilan-cia de colonización e infección por enterobacterias pro-ductoras de carbapenemasas (EPC); vigilancia y medidas preventivas para infecciones urinarias asociadas a sonda vesical (ITU); vigilancia e intervenciones para mejorar la higiene de manos; guías locales de tratamiento de enfer-medades infecciosas con evaluación de adherencia a las mismas y consumo de antibióticos (ATB). Resultados: Comparando periodo pre y postintervención: tasa de EPC en muestras clínicas: 1,1 a 0/días paciente; razón de tasas de incidencia (IRR: 0.00, p: 0.033); tasa de colonización: 3,3 a 0,61/días paciente (IRR: 0.18, p: 0.5). Tasa de ITU 8,9 a 7,2/1000 días catéter urinario (IRR: 0.81, p 0.5). Adherencia a higiene de manos: 77,5% a 70,38% (p 0.0067). Consumo de ATB: 376,24 a 176,82 DDD, (disminu-ción 53%). Adherencia a guías en elección de ATB: 57,1% a 95,4% (p 0.00031); duración de ATB: 92,8% a 98,4% (p 0.16); adecuación según rescate microbiológico: 57,1% a 100% (p <0.01). Conclusión: Un programa con medidas simples, a medida, con supervisión externa, redujo en un tiempo relativamente corto las infecciones por EPC, el consumo y uso apropiado de ATB en un hospital público de medianos/bajos recursos


This quasi-experimental study was developed in a public hospital with the goal of reducing the impact of antimicrobial resistance through an infection prevention and antimicrobial stewardship program. The following measures were implemented: surveillance of colonization and infection by carbapenemase-producing Enterobacteriaceae (CPE); surveillance and preventive measures for urinary catheter-associated infections (UTIs); surveillance and interventions for hand hygiene; local guidelines for treatment of infectious diseases with compliance and antibiotic (ATB) consumption metrics.Results: comparing the pre-intervention and post-intervention period, CPE rate in clinical samples 1.1 to 0/patient days, incidence rate ratio (IRR): 0.00, p: 0.033 and colonization of 3.3 to 0.61/days patient, IRR: 0.18, p-value: 0.5. UTI rate 8.9 to 7.2/1000 days urinary catheter IRR: 0.81, p 0.5. Hand Hygiene compliance: 77.5% to 70.38%, p 0.0067. ATB consumption: 376.24 to 176.82 DDD, 53% decrease. Compliance to guidelines in ATB selection: 57.1% to 95.4% p 0.00031, duration of ATB from 92.8% to 98.4% p 0.16, and adequacy to microbiological rescue of 57.1% at 100%, p <0.01. Conclusion: it is possible to reduce CPE infections, the consumption of antimicrobials and optimize their use in a public hospital in a country with medium/low resources through a program with basic and tailored measures


Assuntos
Humanos , Masculino , Feminino , Resistência Microbiana a Medicamentos , Controle de Infecções , Enterobacteriáceas Resistentes a Carbapenêmicos , Gestão de Antimicrobianos
9.
Micromachines (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004902

RESUMO

At present, a large number of two-degree-of-freedom piezoelectrically driven compliant mechanisms (2-DOF PDCMs) have been widely adopted to construct various elliptical vibration machining (EVM) devices employed in precisely fabricating functional micro-structured surfaces on difficult-to-cut materials, which have broad applications in many significant fields like optical engineering and precision manufacturing. For a higher precision of conventional 2-DOF PDCMs on tracking elliptical trajectories, a novel type of pseudo-decoupling method is proposed based on phase difference compensation (PDC). With finite element analysis (FEA), the dependences of elliptical trajectory tracking precision on PDC angles will then be investigated for optimizing PDC angles under different elliptical parameters. As the modification of the PDC-based method, another type of pseudo-decoupling method will be improved based on elliptical parameter compensation (EPC) for much higher tracking precision, an amplification coefficient and a coupling coefficient will be introduced to mathematically construct the EPC-based model. A series of FEA simulations will also be conducted on a conventional 2-DOF PDCM to calculate the amplification and coupling coefficients as well as optimize the EPC parameters under four series of elliptical parameters. The tracking precision and operational feasibility of these two new pseudo-decoupling methods on four series of elliptical trajectories will be further analyzed and discussed in detail. Meanwhile, a conventional 2-DOF PDCM will be practically adopted to build an experimental system for investigating the pseudo-decoupling performances of an EPC-based method, the input and output displacements will be measured and collected to actually calculate the amplification coefficients and coupling coefficients, further inversely solving the actual input elliptical parameters with EPC. The error distances between the expected and experimental elliptical trajectories will also be calculated and discussed. Finally, several critical conclusions on this study will be briefly summarized.

10.
Quant Imaging Med Surg ; 13(10): 6887-6898, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869304

RESUMO

Background: Axillary lymph node (ALN) metastasis is seen in encapsulated papillary carcinoma (EPC), mostly with an invasive component (INV). Radiomics can offer more information beyond subjective grayscale and color Doppler ultrasound (US) image interpretation. This study aimed to develop radiomics models for predicting an INV of EPC in the breast based on US images. Methods: This study retrospectively enrolled 105 patients (107 masses) with a pathological diagnosis of EPC from January 2016 to April 2021, and all masses had preoperative US images. Of the 107 masses, 64 were randomized to a training set and 43 to a test set. US and clinical features were analyzed to identify features associated with INVs. Then, based on the manually segmented US images to obtain radiomics features, the models to predict INVs were built with 5 ensemble machine learning classifiers. We estimated the performance of the predictive models using accuracy, the area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, and specificity. Results: The mean age was 63.71 years (range, 31 to 85 years); the mean size of tumors was 23.40 mm (range, 9 to 120 mm). Among all clinical and US features, only shape was statistically different between EPC with INVs and those without (P<0.05). In this study, the models based on Random Under Sampling (RUS) Boost, Random Forest, XGBoost, AdaBoost, and Easy Ensemble methods had good performance, among which RUS Boost had the best performance with an AUC of 0.875 [95% confidence interval (CI): 0.750-0.974] in the test set. Conclusions: Radiomics prediction models were effective in predicting the INV of EPC, whereas clinical and US features demonstrated relatively decreased predictive utility.

11.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685993

RESUMO

Endothelial Progenitor Cells (EPCs) can actively participate in revascularization in oxygen-induced retinopathy (OIR). Yet the mechanisms responsible for their dysfunction is unclear. Nogo-A, whose function is traditionally related to the inhibition of neurite function in the central nervous system, has recently been documented to display anti-angiogenic pro-repellent properties. Based on the significant impact of EPCs in retinal vascularization, we surmised that Nogo-A affects EPC function, and proceeded to investigate the role of Nogo-A on EPC function in OIR. The expression of Nogo-A and its specific receptor NgR1 was significantly increased in isolated EPCs exposed to hyperoxia, as well as in EPCs isolated from rats subjected to OIR compared with respective controls (EPCs exposed to normoxia). EPCs exposed to hyperoxia displayed reduced migratory and tubulogenic activity, associated with the suppressed expression of prominent EPC-recruitment factors SDF-1/CXCR4. The inhibition of Nogo-A (using a Nogo-66 neutralizing antagonist peptide) or siRNA-NGR1 in hyperoxia-exposed EPCs restored SDF-1/CXCR4 expression and, in turn, rescued the curtailed neovascular functions of EPCs in hyperoxia. The in vivo intraperitoneal injection of engineered EPCs (Nogo-A-inhibited or NgR1-suppressed) in OIR rats at P5 (prior to exposure to hyperoxia) prevented retinal and choroidal vaso-obliteration upon localization adjacent to vasculature; coherently, the inhibition of Nogo-A/NgR1 in EPCs enhanced the expression of key angiogenic factors VEGF, SDF-1, PDGF, and EPO in retina; CXCR4 knock-down abrogated suppressed NgR1 pro-angiogenic effects. The findings revealed that hyperoxia-induced EPC malfunction is mediated to a significant extent by Nogo-A/NgR1 signaling via CXCR4 suppression; the inhibition of Nogo-A in EPCs restores specific angiogenic growth factors in retina and the ensuing vascularization of the retina in an OIR model.


Assuntos
Células Progenitoras Endoteliais , Hiperóxia , Doenças Retinianas , Animais , Ratos , Oxigênio/efeitos adversos , Proteínas Nogo/genética , Hiperóxia/complicações
12.
Water Res ; 245: 120663, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774540

RESUMO

Sediments can attenuate phosphorus (P) from overlying water and reduce trophic status in zero and first order ditches and streams. These features can be considered as intermediate mitigation features between P mobilised from land, and onward delivery to river systems, if the risk of chemical P release from sediments is minimal. However, risk assessments are rarely based on temporal scale dynamics and especially at fine scale in both sediment and water column environments. In this study, in eutrophic stream catchments, bed sediments were tested fortnightly and spatially over one year for EPC0 (to derive phosphate exchange potential-PEP) and for P across a spectrum from labile to recalcitrant fractions. At the same time stream discharge and P concentrations were measured synchronously at high frequency and resolved to 1-hour intervals and indicated high water quality pressures at all flow rates. PEP indicated spatial and temporal changes most likely caused by periods of source disconnection/reconnection and sediment mobilisation during storm events, moving from periods of high attenuation potential to near saturation. Despite these spatial and temporal changes, PEP did not indicate much potential for chemical P release from the sediments (distributing mostly below or close to zero). However, this may be a misleading risk assessment by itself as physical P release, especially of the labile bicarbonate-dithionite (B-D) P fraction of sediments, was a more dominant process mobilised during storm events reducing by up to 84 % during a succession of summer storm events. The total P and total reactive P loads monitored leaving the catchments were coincident with these changes. The specific downstream trophic effects of this episodic P release will need to be assessed in terms of its bioavailability, in combination with other more noted diffuse and point P source processes.

13.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599627

RESUMO

Dietary modifications can help prevent many cardiovascular disease (CVD) events. Endothelial progenitor cells (EPCs) actively contribute to cardiovascular system maintenance and could function as surrogate markers for evaluating improvement in cardiovascular health resulting from nutritional interventions. This review summarizes the latest research progress on the impact of food and nutrients on EPCs, drawing on evidence from human, animal, and in vitro studies. Additionally, current trends and challenges faced in the field are highlighted. Findings from studies examining cells as EPCs are generally consistent, demonstrating that a healthy diet, such as the Mediterranean diet or a supervised diet for overweight people, specific foods like olive oil, fruit, vegetables, red wine, tea, chia, and nutraceuticals, and certain nutrients such as polyphenols, unsaturated fats, inorganic nitrate, and vitamins, generally promote higher EPC numbers and enhanced EPC function. Conversely, an unhealthy diet, such as one high in sugar substitutes, salt, or fructose, impairs EPC function. Research on outgrowth EPCs has revealed that various pathways are involved in the modulation effects of food and nutrients. The potential of EPCs as a biomarker for assessing the effectiveness of nutritional interventions in preventing CVDs is immense, while further clarification on definition and characterization of EPCs is required.

14.
Front Immunol ; 14: 1202943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545522

RESUMO

Recent studies have demonstrated that a particular group of nucleated cells that exhibit erythroid markers (TER119 in mice and CD235a in humans) possess the ability to suppress the immune system and promote tumor growth. These cells are known as CD45+ erythroid progenitor cells (EPCs). According to our study, it appears that a subset of these CD45+ EPCs originate from B lymphocytes. Under conditions of hypoxia, mouse B lymphoma cells are capable of converting to erythroblast-like cells, which display phenotypes of CD45+TER119+ cells, including immunosuppressive effects on CD8 T cells. Furthermore, non-neoplastic B cells have similar differentiation abilities and exert the same immunosuppressive effect under anemia or tumor conditions in mice. Similar B cells exist in neonatal mice, which provides an explanation for the potential origin of immunosuppressive erythroid cells in newborns. Additionally, CD19+CD235a+ double-positive cells can be identified in the peripheral blood of patients with chronic lymphocytic leukemia. These findings indicate that some CD45+ EPCs are transdifferentiated from a selective population of CD19+ B lymphocytes in response to environmental stresses, highlighting the plasticity of B lymphocytes. We anticipate a potential therapeutic implication, in that targeting a specific set of B cells instead of erythroid cells should be expected to restore adaptive immunity and delay cancer progression.


Assuntos
Anemia , Eritroblastos , Humanos , Recém-Nascido , Animais , Camundongos , Eritroblastos/patologia , Células Precursoras Eritroides , Diferenciação Celular , Linfócitos B/patologia
15.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37548268

RESUMO

Teopod1 (Tp1), Teopod2 (Tp2), and Early phase change (Epc) have profound effects on the timing of vegetative phase change in maize. Gain-of-function mutations in Tp1 and Tp2 delay all known phase-specific vegetative traits, whereas loss-of-function mutations in Epc accelerate vegetative phase change and cause shoot abortion in some genetic backgrounds. Here, we show that Tp1 and Tp2 likely represent cis-acting mutations that cause the overexpression of Zma-miR156j and Zma-miR156h, respectively. Epc is the maize ortholog of HASTY, an Arabidopsis gene that stabilizes miRNAs and promotes their intercellular movement. Consistent with its pleiotropic phenotype and epistatic interaction with Tp1 and Tp2, epc reduces the levels of miR156 and several other miRNAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Zea mays/genética , Mutação , Arabidopsis/genética , Genes de Plantas , MicroRNAs/genética , Regulação da Expressão Gênica de Plantas , Carioferinas/genética , Proteínas de Arabidopsis/genética
16.
Microb Pathog ; 183: 106293, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557931

RESUMO

Spring viremia of carp virus (SVCV) is a lethal freshwater pathogen of cyprinid fish that has caused significant economic losses to aquaculture. To reduce the economic losses caused by SVCV, its pathogenic mechanism needs to be studied more thoroughly. Here, we report for the first time that SVCV infection of Epithelioma papulosum cyprini (EPC) cells can induce cellular autophagy and apoptosis through endoplasmic reticulum stress. The presence of autophagic vesicles in infected EPC cells was shown by transmission electron microscopy. Quantitative fluorescence PCR and Western blot results showed that p62 mRNA expression was decreased, and the expression of Beclin1 and LC3 mRNA was increased. The p62 protein was decreased, and the Beclin1 protein and LC3 were increased in the endoplasmic reticulum stress activation state. To further clarify the mode of death of SVCV-infected EPC cells, we examined caspase3, caspase9, BCL-2, and Bax mRNA, which showed that they were all increased. Apoptosis of SVCV-infected cells increased upon activation of endoplasmic reticulum stress. Our results suggest that endoplasmic reticulum stress can regulate SVCV infection-induced autophagy and apoptosis. The results of this study provide theoretical data for the pathogenesis of SVCV and lay the foundation for future drug development and vaccine construction.


Assuntos
Carcinoma , Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Animais , Viremia , Proteína Beclina-1 , Apoptose , Autofagia
17.
Theranostics ; 13(13): 4316-4332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649603

RESUMO

Rationale: Hepatocellular carcinoma (HCC) is primarily characterized by a high incidence of vascular invasion. However, the specific mechanism underlying portal vein tumor thrombus (PVTT) in HCC remains unclear. As a consequence of myeloid cell developmental arrest, CD71+ erythroid progenitor cells (EPCs) and myeloid-derived suppressor cells play important roles in HCC; however, their roles in PVTT remain unclear. Methods: The role of CD71+ EPCs in the HCC tumor microenvironment (TME) was evaluated via morphological, RNA-sequencing, enzyme-linked immunosorbent assay, and flow cytometric analyses. Co-culture techniques were employed to assess the CD45+ EPCs and their vascular compromising effect. Additionally, the PVTT-promoting function of CD45+ EPCs was explored in vivo in a murine model. Results: The CD45+EPCs in HCC tissues exhibited increased myeloid cell features, including morphology, surface markers, transforming growth factor (TGF)-ß generation, and gene expression, compared with those in circulation. Hence, a large proportion of CD45+EPCs, particularly those in TMEs, comprise erythroid-transdifferentiated myeloid cells (EDMCs). Additionally, the expression of C-C chemokine receptor type 2 (CCR2) mRNA was upregulated in CD45+EPCs within the TME. Tumor macrophages from HCC tissues induced substantial migration of CD45+EPCs in a dose-dependent manner. Meanwhile, results from immunofluorescence analyses revealed that these two cell types are positively associated in the TME and circulation. That is, EDMCs are chemoattracted by HCC macrophages mainly via CCR2 from CD45+ EPCs in the circulation. Additionally, the expressions of FX, FVII, FGB, C4b, CFB, and CFH were elevated in CD45+EPCs within the TME compared with those in the spleen. The CD45+EPCs from the HCC TME promoted vessel endothelial cell migration and compromised tube formation through TGF-ß and FGB, respectively. Additionally, CD45+EPCs from the TME induced HCC cell migration. HCC macrophage-induced CD45+EPCs to exhibit higher levels of FX, FVII, FGB, and TGF-ß. Meanwhile, upregulation of CCAAT/enhancer binding protein beta expression induced FGB and TGF-ß generation in CD45+EPCs in the TME. WTAP, a major RNA m6A writer, stabilized FX and FVII mRNA and enhanced their nuclear export in CD45+EPCs from the TME. CD45+EPCs from the TME were positively associated with PVTT and poor prognosis. Splenectomy reduced the level of CD45+EPCs in the circulation and TME, as well as the incidence of microvascular invasion. The incidence of microvascular invasion increased following the transfer of HCC tissue CD45+EPCs to splenectomized HCC-bearing mice. Conclusions: The CD45+EPCs enriched in the HCC microenvironment are EDMCs, which are induced by HCC macrophages to migrate from the circulation to the TME. Subsequently, EDMCs promote PVTT by compromising the blood vessel endothelium, aggravating coagulation, and promoting HCC cell migration.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trombose , Animais , Camundongos , Veia Porta , Células Mieloides , Microambiente Tumoral
18.
Tissue Eng Regen Med ; 20(5): 695-704, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37266845

RESUMO

BACKGROUND: Human endothelial progenitor cells (EPCs) were first identified in the peripheral blood and later in the cord blood and bone marrow (BM) with different vascularization capacity and different surface marker profiles. However, their identity and functional roles in neovascularization have not been clearly demonstrated in vivo and in vitro. METHODS: Characterization of BM-EPC like cells were performed by fluorescence-activated cell sorting, immunofluorescence staining, enzyme-linked immunosorbent assay, Matrigel tube formation assay, and western blot analysis. RESULTS: BM-EPC like cells were identified by selective adhesion to fibronectin and collagen from BM mononuclear cells, which generate fast-growing colonies with spindle morphology, express surface markers of CD105, vWF, UEA-I lectin binding, secrete HGF, VEGF, TGF-beta1 but can be distinguished from circulating EPC and endothelial cells by no expression of surface markers such as CD31, CD309, CD45, and CD34. These BM-EPC like cells shared many cell surface markers of BM-mesenchymal stem cells (MSC) but also can be distinguished by their vasculogenic property and other unique surface markers. Furthermore, the vasculogenic capacity of BM-EPC like cells were enhanced by co-culture of BM-MSC or PDGF-BB priming. PDGF-BB stimulated cell migration, proliferation, and secretion of laminin ß-1, which was proposed as one of the mechanisms involved in the better vascularization of BM-EPC like cells. CONCLUSION: PDGF-BB priming may be applied to improve the potency and function of BM-EPC like cells as vasculogenic cell therapy for the ischemic vascular repair.


Assuntos
Células Progenitoras Endoteliais , Células-Tronco Mesenquimais , Humanos , Becaplermina/metabolismo , Medula Óssea , Células Progenitoras Endoteliais/metabolismo , Diferenciação Celular
19.
Histopathology ; 83(3): 376-393, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37232543

RESUMO

BACKGROUND: Encapsulated papillary carcinoma (EPC) is surrounded by a thick fibrous capsule-like structure, which is interpreted as a thickened basement membrane (BM). This study aimed to describe the geometric characteristics of the EPC capsule and to refine whether it is an expansion of the BM or a stromal reactive process. MATERIAL AND METHODS: In all, 100 cases were divided into four groups: EPC, ductal carcinoma in situ (DCIS), normal breast tissue and invasive tumours, with an additional encapsulated papillary thyroid carcinoma (EPTC) control group. Representative slides from each case were stained with picrosirius red (PSR) stain and examined using polarised microscopy. Images were analysed using ImageJ, CT-FIRE, and Curve align image analysis programmes. RESULTS: Compared to the normal and DCIS BM, the EPC group showed a significant increase of collagen fibre width, straightness, and density, and a decrease of fibre length. The EPC capsule showed less alignment of fibres with a more perpendicular arrangement, and it was enriched with disorganised collagen type I (stromal collagen) fibres. Compared to other groups, the EPC capsule showed significant variation in the thickness, evenness, distribution of collagen fibres, and significant intracapsular heterogeneity. Compared to BM-like material in the invasive group, the EPC capsule showed a higher density of collagen fibres with longer, straighter, and more aligned fibres, but there was no difference in the distribution of both collagen types I and III. Conversely, compared to EPTC, there were no differences between both EPC and EPTC capsules except that the fibres in the EPC capsule were straighter. Although differences between normal ducts and lobules and DCIS BM collagen fibre density, straightness, orientation, and alignment were detected, both were significantly different from EPC capsule. CONCLUSION: This study provided evidence that the EPC capsule is a reactive process rather than a thickened native BM characteristic of normal and in situ lesions, which provides further evidence that EPC is an indolent invasive carcinoma based on capsule characteristics.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Papilar/patologia , Membrana Basal , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/patologia , Colágeno
20.
Materials (Basel) ; 16(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241238

RESUMO

To fabricate miniature semiconductors of 10 nm or less, various process technologies have reached their physical limits, and new process technologies for miniaturization are required. In the etching process, problems such as surface damage and profile distortion have been reported during etching using conventional plasma. Therefore, several studies have reported novel etching techniques such as atomic layer etching (ALE). In this study, a new type of adsorption module, called the radical generation module, was developed and applied in the ALE process. Using this module, the adsorption time could be reduced to 5 s. Moreover, the reproducibility of the process was verified and an etch per cycle of 0.11 nm/cycle was maintained as the process progressed up to 40 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...